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« Clearly, the performance of a lightwave system can be improved considerably by operating 

near the zero-dispersion wavelength of the fiber and using optical sources with a relatively 

narrow spectral width. » 

Govind P. Agrawal (1951 – ) (New York: Fiber-Optic Communication Systems, Fourth 

Edition, Wiley, 2010, page 52) 

 

The main goal of this project is to calculate the dispersion-induced limitations on fiber-optic 

communication systems. We are exclusively interested in long-haul links, namely when optical 

sources with a small spectral width and single-mode fibers are used. Also, we are mainly 

focused on estimating the maximum theoretical value for the bit rate of a single channel, i.e., 

we do not address herein multichannel systems (WDM or wavelength-division multiplexing). 

In fact, if we denote by 0B  the (maximum) channel bit rate and by chf  the channel spacing 

in frequency units, then the so-called spectral efficiency of a WDM system is 
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One should note that, for coherent detection, it is possible to have 1 11 b s Hzs
− −   . 

 

Pulse Propagation and 

Bit Rate in SMFs 
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To estimate the bit rate in this project we will always consider, at the input, chirped Gaussian 

pulses of the form 
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where C  is the (dimensionless) chirp parameter and 0 0A . Students are referred to the 

following PowerPoint file: Pulse Propagation in Single-Mode Fibers. 

 

To calculate the bit rate we will use the following expression 
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where   is the RMS (root mean square) width of the pulse ( ),z tA  at point z . The longitudinal 

wavenumber (also known as the propagation constant) ( )  =  is expanded in a Taylor 

series around the carrier frequency 0 , such that 
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However, in this expansion, we only retain terms up to the third order. In this project we always 

consider that 
2 0   and 

3 0  . One should note that 
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where the group velocity is given by 
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Coefficient 2  is called the GVD (group-velocity dispersion) whereas 3  accounts for higher-

-order dispersion. For a given point ( )0z z L   along the fiber, the group delay is then 
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Only when 3 0 =  can we get a Gaussian pulse propagating along the fiber from the input (at 

0z = ) to the output (at z L= ). Otherwise, if 3 0  , the pulse is not Gaussian along the fiber; 

it is only Gaussian at the input. 
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To simplify our equations, we introduce a normalized distance 
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and a normalized pulse width 
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where we have also introduced a characteristic time 0  such that 

 

0 2 L = . 

 

Accordingly, we can easily find that 
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In writing this last equation we have also defined the two following (dimensionless) 

coefficients 
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Also, we have the following ratio 
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However, we can readily see that the output pulse width depends on the input pulse width, i.e., 

we have ( )1 1 0  = . Therefore, we are interested in the optimization procedure corresponding 

to calculate the minimum value of this function. Thereby, we calculate opt

0  and opt

1 . 

 

One should note that, after this optimization procedure, the evolution (along the fiber) of ( )   

depends on the chirp parameter C . Therefore, we define a critical value of this parameter, 

crC C= , as the one that leads to 
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Then, we can calculate the bit rate as follows. Denoting by bT  the allocated bit slot, the bit rate 

is – by definition – the value 

 

1

b

B
T

= . 



 
6 

Let us define, as a thumb rule, 
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This leads to a maximum value 0B  of the bit rate given by 
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In your project you must present a logical sequence of reasons leading to the calculation of the 

bit rate along the lines previously stated. To illustrate that argument, you should present several 

plots. These plots can be readily obtained using the MATLAB scripts: 

 

a_coefficient.m

cubic_equation.m

chi_1_vs_chi_0.m

chirp_critical_graphical.m

chirp_critical_solution.m

pulse_width_evolution.m

mu_vs_chirp.m

bit_rate.m

bit_rate_vs_length.m

 

 

Remark – You should use the numerical values already inserted in those scripts. However, in 

writing your report, we should state all those numerical values that gave rise to those specific 

figures. Please note that these figures (although with different numerical values) were used in 

the aforementioned PowerPoint file. 


